
Supporting Radio Clocks in OpenBSD

Marc Balmer <mbalmer@openbsd.org>

micro systems/OpenBSD

BSDConTr, Istanbul, Turkey

Agenda

1 Introduction

2 Radio Clocks

3 Architectural Overview

4 Support for GPS-Receivers

5 Support for Time Signal Station Receivers

6 Using and Redistributing Time

7 Conclusion

8 Colophon

Trivia

Every computer has a clock device, but they drift

Computer clocks can be sychronized using NTP

GPS and Time signal stations can provide an external
reference time, e.g. where there is no net to reach any NTP
servers.

OpenNTPD can be used to serve the received time on a local
net.

Time Signal Stations

Transmit time information using longwave radio

Different coding schemes, but similar principles

We currently support DCF77 (.de) and HBG (.ch)

MSF (.uk), will be added

JJY (.jp), will be added on my next trip to .jp (sponsors?)

Global Positioning System GPS

3D Localization based on calculation with precise time
information

Time information can be extracted to get precise time

We are only interested in time information, not the position
information

Time Signal Stations vs. GPS

GPS

Available worldwide
Good receiving conditions (skyview) needed
No rule w/o exception: Some Swiss made receivers work inside
building (using signal reflections)

Time Signal Stations

Work inside buildings, even in the basement
Not available everywere

Overall Architecture

Userland

Kernel

t ty(4)

ioctl Interface sysctl Interface

nmeaattach(8)

nmea(4) mbg(4) udcf(4)

Sensors Framework
(Timedelta Sensors)

ntpd (OpenNTP)

Representing Time as the Error of the Local Clock

Not the absolute time received, but the difference between the
system time and the received time is provided (i.e. the error
of the local clock)

The purpose of the driver is to calculate this offset

This timedelta can be accessed through the sensors framework

Sensors

Sensors provide operational status of devices like
temperatures, fan speeds, etc.

Sensors are read-only values that can be queried using the
sysctl mechanism: sysctl hw.sensors

Sensors have a name, description, value, a state, and a
timestamp

Timedelta sensors indicate the error of the system time
in nanoseconds

Line Disciplines

Are a set of functions that are called from tty code

Can receive every character received by the tty

Can look at and manipulate the data stream

Are set using an ioctl(2) on the device

A well known line discipline besides TERMIOS is SLIP

The Mother Tongue of GPS Devices: NMEA 0183

National Marine Electronics Association

An ASCII protocol to transmit navigation data

Date, time, position, speed, course, etc.

Spilled out by most GPS units

Easy to parse record format

Each record starts with ’$’ and extends to the CR/LF
No longer than 82 characters
Comma separated values

Many GPS units also speak proprietary binary formats

nmea(4), a Line Discipline to Decode NMEA 0183

A tty line discipline that provides a timedelta sensor

Decode the GPRMC message to get time information

Indicates GPS warning status in the sensor status

Can make use of PPS signals through tty timestamping

For highest possible precision, use PPS

nmea(4), Decoding Time from NMEA Sentences

Look at the received NMEA stream and decode the GPRMC
message

All NMEA devices support the GPRMC message

Calculate the offset between the local time and the time
received

But: When was the time just received valid?

GPS devices with PPS signal

PPS = Pulse Per Second, a higly precise signal triggered at
the start of each second, typically 1us precision

The GPRMC message following the PPS indicates time at the
moment the PPS occured

tty timestamping has been added for correlate the
GPRMC message to a point in time

tty Timestamps Tell When the Received Time was Valid

PPS signal has to be wired to a serial port’s CTS or DCD line

When the PPS even occurs, the current system time is
immediately copied to a buffer by the tty device

nmea(4) copies the timestamp at the next possible occasion

Timestamping can be done on the raising or falling edge

Keep in mind: It is precise, but OpenBSD is not a real-time
operating system

Timestamps Without a PPS signal

Cheap GPS device or USB attached ones don’t provide a PPS
signal

Soft timestamp is taken on the first ’$’ of the first message at
the beginning of a second:

$GPABC,. . . take timstamp at ’$’ character
$GPDEF,. . . more messages
$GPRMC,. . . decode time here
. . . more messages & a longer gap

Beginning of a second is determined by measuring the time
between consecutive sentences (called ”the gap” in the
source)

Something completely different: udcf(4)

Device driver that provides a timedelta sensor

Decode the DCF77 and HBG timecode

Indicate the timecode (DCF77 or HBG) in the sensor
description and the quality of the timedelta in the sensor
status

Details of the DCF77 Timecode
(used by HBG, too)

Bits 0-14 Weather Information (encrypted)
Bit 15 Call bit
Bit 16 Announcement of DST change
Bit 17-18 Indication of DST
Bit 19 Announcement of a leap second
Bit 20 Start of encoded time information
Bits 21-27 Minute
Bit 28 Parity
Bits 29-34 Hour
Bit 35 Parity
Bits 36-41 Day of month
Bits 42-44 Day of week
Bits 45-49 Month
Bits 50-57 Year
Bit 58 Parity

Receiving the Timecode

Bits are transmitted by reducing the amplitude of the

signal to about 1/3 at the start of each second

Convert length of reduction to 1’s and 0’s
logical 0 low-level pulse of 100 ms duration
logical 1 low-level pulse of 200 ms duration

Basic Time Decoding Algorithm

Synchronize: Wait for a delay between two bits > 1.5 sec

Next bit is bit 0

Pick up all 59 bits

Decode bits

Make time valid at next start of a second

udcf(4) Implementation Details

On attach power up the receiver

Set up timeouts to decode the bit stream

Start of a second is detected in a fast loop (defines overall
”precision”)

On detach stop all timeouts

Decoding using timeout(9)
(reset at the start of every second)

T1 150 ms Bit detection
T2 250 ms Clock type detection
T3 800 ms Restart fast polling

T4 1500 ms Detect the minute gap
T5 3000 ms Detect signal loss

Update of the Sensor Value

Time information received is decoded and veryfied in the T4
(minute gap) timeout routine

The sensor value is updated at the start of the next second

Limitations udcf(4)

Polling over USB severely impacts precision

Longwave transmission results in a small position dependend
offset, this offset changes during the day

The propagation delay is a non-issues for us since the
supported receivers have a precision of 30ms - 70ms

This is a best effort driver, precision is around 100ms at best

Still enough precision for most applications

mbg(4), PCI attached Industrial Receivers

PCI based receiver cards for the DCF77 time signal station
and GPS

Very high precision

Supports the following cards:

PCI32, 5V DCF77 receiver
PCI511, 3.3V/5V DCF77 reveiver
GPS170PCI, 3.3V/5V 6-channel GPS receiver

splhigh();
getnanotime();
write command to card ← card takes timestamp
splx();
later: read timestamp from card

OpenNTPD and Timedelta Sensors

ntpd was extended to support timedelta sensors

The new keyword is sensor <name> or simply sensor *

ntpd recognizes new sensors at runtime and uses them

Digression: Setting the System Time

No problem when done at system startup

Serious problems may occur when changing the time at
runtime

Programs might rely on time intervals or on absolute time

Changing the Time at Runtime

Time as a continuum: Compress or stretch the time axis but
never loose a time unit

adjtime(2)

Time as a sequence of time units with fixed length: Insert ot
delete time units but don’t stretch or compress the time axis

settimeofday(2)

Use adjtime(2) or settimeofday(2) ?

Consider the type of the software that is running

cron(8): Needs all time units to start programs

Other software might rely on accuracy of the tickrate

If both types run: Changing the time yields unpredictable
results. The system time should better not be adjusted at
runtime

But keep in mind: OpenBSD is not a realtime OS

Summary, New Concepts

Novel way in getting at the time and making it available in
the operating systems

Timedelta sensors as an abstraction of the radio-clock and a
uniform way to get at precise time, independent of the device
being used

Soft- and hard (PPS) timestamping for GPS

Received time is validated before it is used

Summary, Clock Device Support

udcf(4)

Almost no hardware dependency (other than having USB)
Limited precision (as polling over USB is needed)
Support for MSF (.uk) is planned

nmea(4)

Works with almost all GPS receivers, serial-, USB-, CF-, and
PCMCIA-attached
Highest possible precision with PPS capable devices, requires
special wiring

mbg(4)

High precision
Industrial grade receivers

Acknowledgments

Meinberg Funkuhren donated several PCI based GPS and time
signal station receiver cards for the development of mbg(4)

Gude ADS donated several Expert Mouse CLOCK devices for
the development of the udcf(4) driver

The concept of timedelta sensors was an idea of Theo de
Raadt who also did the implementation of the tty
timestamping code.

Several OpenBSD users donated radio clocks of any kind to
help with time related development, which was much
appreciated.

Many OpenBSD developers helped in various ways, be it by
testing the code or by pushing me in the right direction.

Availability

nmea(4) and udcf(4) are included in OpenBSD since the 4.0
release. The newer mbg(4) driver is included in OpenBSD since
the 4.1 release.

http://www.openbsd.org/

About the Author

After working for Atari Corp. in Switzerland where he was responsible for
Unix and Transputer systems, Marc Balmer founded his company micro
systems in 1990 which first specialised in real-time operating systems and
later Unix. During his studies at the University of Basel, he worked as a
part time Unix system administrator.
He led the IT-research department of a large Swiss insurance company
and he was a lecturor and member of the board of Hyperwerk, an
Institute of the Basel University of Applied Sciences.
Today he fully concentrates on micro systems, which provides custom
programming and IT outsourcing services mostly in the Unix environment.
Marc Balmer is an active OpenBSD developer; he was chair of the 2005
EuroBSDCon conference that was held at the University of Basel.

In his spare time he likes to travel, to photograph and to take rides on his

motorbike. He is a licensed radioamateur with the call sign HB9SSB.

Contact Information

Marc Balmer
micro systems
Wiesendamm 2a, Postfach
CH-4019 Basel
Switzerland

E-mail marc@msys.ch, mbalmer@openbsd.org
Company web http://www.msys.ch/
Personal web http://www.vnode.ch/

	Introduction
	Radio Clocks
	Architectural Overview
	Support for GPS-Receivers
	Support for Time Signal Station Receivers
	Using and Redistributing Time
	Conclusion
	Colophon

